Hidden Markov Models for Time Series
An Introduction Using R
MONOGRAPHS ON STATISTICS AND APPLIED PROBABILITY

General Editors

J. Fan, V. Isham, N. Keiding, T. Louis, R. L. Smith, and H. Tong

1 Stochastic Population Models in Ecology and Epidemiology M.S. Bartlett (1960)
2 Queues D.R. Cox and W.L. Smith (1961)
3 Monte Carlo Methods J.M. Hammersley and D.C. Handscomb (1964)
5 Population Genetics W.J. Ewens (1969)
6 Probability, Statistics and Time M.S. Bartlett (1975)
7 Statistical Inference S.D. Silvey (1975)
8 The Analysis of Contingency Tables B.S. Everitt (1977)
9 Multivariate Analysis in Behavioural Research A.E. Maxwell (1977)
10 Stochastic Abundance Models S. Engen (1978)
12 Point Processes D.R. Cox and V. Isham (1980)
14 Optimal Design S.D. Silvey (1980)
15 Finite Mixture Distributions B.S. Everitt and D.J. Hand (1981)
16 Classification A.D. Gordon (1981)
18 Residuals and Influence in Regression R.D. Cook and S. Weisberg (1982)
23 Bandit Problems D.A. Berry and B. Fristedt (1985)
24 Stochastic Modelling and Control M.H.A. Davis and R. Vinter (1985)
26 Density Estimation for Statistics and Data Analysis B.W. Silverman (1986)
27 Regression Analysis with Applications G.B. Wetherill (1986)
30 Transformation and Weighting in Regression R.J. Carroll and D. Ruppert (1988)
33 Analysis of Infectious Disease Data N.G. Becker (1989)
34 Design and Analysis of Cross-Over Trials B. Jones and M.G. Kenward (1989)
36 Symmetric Multivariate and Related Distributions K.T. Fang, S. Kotz and K.W. Ng (1990)
40 Subset Selection in Regression A.J. Miller (1990)
41 Analysis of Repeated Measures M.J. Crowder and D.J. Hand (1990)
42 Statistical Reasoning with Imprecise Probabilities P. Walley (1991)
44 Inspection Errors for Attributes in Quality Control
N.L. Johnson, S. Kotz and X. Wu (1991)
45 The Analysis of Contingency Tables, 2nd edition B.S. Everitt (1992)
46 The Analysis of Quantal Response Data B.J.T. Morgan (1992)
47 Longitudinal Data with Serial Correlation—A State-Space Approach
R.H. Jones (1993)
49 Markov Models and Optimization M.H.A. Davis (1993)
50 Networks and Chaos—Statistical and Probabilistic Aspects
52 Inference and Asymptotics O.E. Barndorff-Nielsen and D.R. Cox (1994)
53 Practical Risk Theory for Actuaries
C.D. Daykin, T. Pentikäinen and M. Pesonen (1994)
54 Biplots J.C. Gower and D.J. Hand (1996)
55 Predictive Inference—An Introduction S. Geisser (1993)
58 Nonparametric Regression and Generalized Linear Models
P.J. Green and B.W. Silverman (1994)
59 Multidimensional Scaling T.F. Cox and M.A.A. Cox (1994)
62 Nonlinear Models for Repeated Measurement Data
M. Davidian and D.M. Giltinan (1995)
63 Measurement Error in Nonlinear Models
64 Analyzing and Modeling Rank Data J.J. Marden (1995)
65 Time Series Models—In Econometrics, Finance and Other Fields
67 Multivariate Dependencies—Models, Analysis and Interpretation
D.R. Cox and N. Wermuth (1996)
68 Statistical Inference—Based on the Likelihood A. Azzalini (1996)
69 Bayes and Empirical Bayes Methods for Data Analysis
B.P. Carlin and T.A. Louis (1996)
70 Hidden Markov and Other Models for Discrete-Valued Time Series
I.L. MacDonald and W. Zucchini (1997)
72 Analysis of Incomplete Multivariate Data J.L. Schafer (1997)
73 Multivariate Models and Dependence Concepts H. Joe (1997)
75 Retrial Queues G. Falin and J.G.C. Templeton (1997)
77 Mixed Poisson Processes J. Grandell (1997)
79 Bayesian Methods for Finite Population Sampling
G. Meeeden and M. Ghosh (1997)
80 Stochastic Geometry—Likelihood and computation
81 Computer-Assisted Analysis of Mixtures and Applications—
Meta-analysis, Disease Mapping and Others D. Böhning (1999)
82 Classification, 2nd edition A.D. Gordon (1999)
84 Statistical Aspects of BSE and vCJD—Models for Epidemics
C.A. Donnelly and N.M. Ferguson (1999)
87 Complex Stochastic Systems
89 Algebraic Statistics—Computational Commutative Algebra in Statistics
90 Analysis of Time Series Structure—SSA and Related Techniques
N. Golyandina, V. Nekrutkin and A.A. Zhigljavsky (2001)
91 Subjective Probability Models for Lifetimes
Fabio Spizzichino (2001)
93 Statistics in the 21st Century
Adrian E. Raftery, Martin A. Tanner, and Martin T. Wells (2001)
94 Accelerated Life Models: Modeling and Statistical Analysis
Vilijandas Bagdonavicius and Mikhail Nikulin (2001)
96 Topics in Modelling of Clustered Data
98 Design and Analysis of Cross-Over Trials, 2nd Edition
Byron Jones and Michael G. Kenward (2003)
99 Extreme Values in Finance, Telecommunications, and the Environment
Bärbel Finkenstädt and Holger Rootzén (2003)
100 Statistical Inference and Simulation for Spatial Point Processes
101 Hierarchical Modeling and Analysis for Spatial Data
102 Diagnostic Checks in Time Series. Wai Keung Li (2004)
104 Gaussian Markov Random Fields: Theory and Applications
Håvard Rue and Leonhard Held (2005)
106 Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood
107 Statistical Methods for Spatio-Temporal Systems
Bärbel Finkenstädt, Leonhard Held, and Valerie Isham (2007)
108 Nonlinear Time Series: Semiparametric and Nonparametric Methods
Jiti Gao (2007)
109 Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis
Michael J. Daniels and Joseph W. Hogan (2008)
Walter Zucchini and Iain L. MacDonald (2009)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Für Hanne und Werner,
mit herzlichem Dank für Eure Unterstützung
bei der Suche nach den versteckten Ketten.
Contents

Preface xvii
Notation and abbreviations xxi

PART ONE Model structure, properties and methods 1

1 Preliminaries: mixtures and Markov chains 3
 1.1 Introduction 3
 1.2 Independent mixture models 6
 1.2.1 Definition and properties 6
 1.2.2 Parameter estimation 9
 1.2.3 Unbounded likelihood in mixtures 10
 1.2.4 Examples of fitted mixture models 11
 1.3 Markov chains 15
 1.3.1 Definitions and example 16
 1.3.2 Stationary distributions 18
 1.3.3 Reversibility 19
 1.3.4 Autocorrelation function 19
 1.3.5 Estimating transition probabilities 20
 1.3.6 Higher-order Markov chains 22
 Exercises 24

2 Hidden Markov models: definition and properties 29
 2.1 A simple hidden Markov model 29
 2.2 The basics 30
 2.2.1 Definition and notation 30
 2.2.2 Marginal distributions 32
 2.2.3 Moments 34
 2.3 The likelihood 35
 2.3.1 The likelihood of a two-state Bernoulli–HMM 35
 2.3.2 The likelihood in general 37
 2.3.3 The likelihood when data are missing at random 39

© 2009 by Walter Zucchini and Iain MacDonald
2.3.4 The likelihood when observations are interval-censored

Exercises

3 Estimation by direct maximization of the likelihood

3.1 Introduction

3.2 Scaling the likelihood computation

3.3 Maximization subject to constraints

3.3.1 Reparametrization to avoid constraints

3.3.2 Embedding in a continuous-time Markov chain

3.4 Other problems

3.4.1 Multiple maxima in the likelihood

3.4.2 Starting values for the iterations

3.4.3 Unbounded likelihood

3.5 Example: earthquakes

3.6 Standard errors and confidence intervals

3.6.1 Standard errors via the Hessian

3.6.2 Bootstrap standard errors and confidence intervals

3.7 Example: parametric bootstrap

Exercises

4 Estimation by the EM algorithm

4.1 Forward and backward probabilities

4.1.1 Forward probabilities

4.1.2 Backward probabilities

4.1.3 Properties of forward and backward probabilities

4.2 The EM algorithm

4.2.1 EM in general

4.2.2 EM for HMMs

4.2.3 M step for Poisson– and normal–HMMs

4.2.4 Starting from a specified state

4.2.5 EM for the case in which the Markov chain is stationary

4.3 Examples of EM applied to Poisson–HMMs

4.3.1 Earthquakes

4.3.2 Foetal movement counts

4.4 Discussion

Exercises

5 Forecasting, decoding and state prediction

5.1 Conditional distributions

© 2009 by Walter Zucchini and Iain MacDonald
PART TWO Applications

9 Epileptic seizures
9.1 Introduction
9.2 Models fitted
9.3 Model checking by pseudo-residuals
Exercises

10 Eruptions of the Old Faithful geyser
10.1 Introduction
10.2 Binary time series of short and long eruptions
 10.2.1 Markov chain models
 10.2.2 Hidden Markov models
 10.2.3 Comparison of models
 10.2.4 Forecast distributions
10.3 Normal–HMMs for durations and waiting times
10.4 Bivariate model for durations and waiting times
Exercises

11 Drosophila speed and change of direction
11.1 Introduction
11.2 Von Mises distributions
11.3 Von Mises–HMMs for the two subjects
11.4 Circular autocorrelation functions
11.5 Bivariate model
Exercises

12 Wind direction at Koeberg
12.1 Introduction
12.2 Wind direction classified into 16 categories
 12.2.1 Three HMMs for hourly averages of wind direction
 12.2.2 Model comparisons and other possible models
 12.2.3 Conclusion
12.3 Wind direction as a circular variable
 12.3.1 Daily at hour 24: von Mises–HMMs
 12.3.2 Modelling hourly change of direction
 12.3.3 Transition probabilities varying with lagged speed
Exercises

© 2009 by Walter Zucchini and Iain MacDonald
CONTENTS

12.3.4 Concentration parameter varying with lagged speed 177
Exercises 180

13 Models for financial series 181
13.1 Thinely traded shares 181
 13.1.1 Univariate models 181
 13.1.2 Multivariate models 183
 13.1.3 Discussion 185
13.2 Multivariate HMM for returns on four shares 186
13.3 Stochastic volatility models 190
 13.3.1 Stochastic volatility models without leverage 190
 13.3.2 Application: FTSE 100 returns 192
 13.3.3 Stochastic volatility models with leverage 193
 13.3.4 Application: TOPIX returns 195
 13.3.5 Discussion 197

14 Births at Edendale Hospital 199
14.1 Introduction 199
14.2 Models for the proportion Caesarean 199
14.3 Models for the total number of deliveries 205
14.4 Conclusion 208

15 Homicides and suicides in Cape Town 209
15.1 Introduction 209
15.2 Firearm homicides as a proportion of all homicides, suicides and legal intervention homicides 209
15.3 The number of firearm homicides 211
15.4 Firearm homicide and suicide proportions 213
15.5 Proportion in each of the five categories 217

16 Animal behaviour model with feedback 219
16.1 Introduction 219
16.2 The model 220
16.3 Likelihood evaluation 222
 16.3.1 The likelihood as a multiple sum 223
 16.3.2 Recursive evaluation 223
16.4 Parameter estimation by maximum likelihood 224
16.5 Model checking 224
16.6 Inferring the underlying state 225
16.7 Models for a heterogeneous group of subjects 226
 16.7.1 Models assuming some parameters to be constant across subjects 226

© 2009 by Walter Zucchini and Iain MacDonald
16.7.2 Mixed models 227
16.7.3 Inclusion of covariates 227

16.8 Other modifications or extensions 228
16.8.1 Increasing the number of states 228
16.8.2 Changing the nature of the state-dependent distribution 228

16.9 Application to caterpillar feeding behaviour 229
16.9.1 Data description and preliminary analysis 229
16.9.2 Parameter estimates and model checking 229
16.9.3 Runlength distributions 233
16.9.4 Joint models for seven subjects 235

16.10 Discussion 236

A Examples of R code 239
A.1 Stationary Poisson–HMM, numerical maximization 239
A.1.1 Transform natural parameters to working 240
A.1.2 Transform working parameters to natural 240
A.1.3 Log-likelihood of a stationary Poisson–HMM 240
A.1.4 ML estimation of a stationary Poisson–HMM 241
A.2 More on Poisson–HMMs, including EM 242
A.2.1 Generate a realization of a Poisson–HMM 242
A.2.2 Forward and backward probabilities 242
A.2.3 EM estimation of a Poisson–HMM 243
A.2.4 Viterbi algorithm 244
A.2.5 Conditional state probabilities 244
A.2.6 Local decoding 245
A.2.7 State prediction 245
A.2.8 Forecast distributions 246
A.2.9 Conditional distribution of one observation given the rest 246
A.2.10 Ordinary pseudo-residuals 247

A.3 Bivariate normal state-dependent distributions 248
A.3.1 Transform natural parameters to working 248
A.3.2 Transform working parameters to natural 249
A.3.3 Discrete log-likelihood 249
A.3.4 MLEs of the parameters 250

A.4 Categorical HMM, constrained optimization 250
A.4.1 Log-likelihood 251
A.4.2 MLEs of the parameters 252

B Some proofs 253
B.1 Factorization needed for forward probabilities 253
B.2 Two results for backward probabilities 255
Preface

In the eleven years since the publication of our book *Hidden Markov and Other Models for Discrete-valued Time Series* it has become apparent that most of the ‘other models’, though undoubtedly of theoretical interest, have led to few published applications. This is in marked contrast to hidden Markov models, which are of course applicable to more than just discrete-valued time series. These observations have led us to write a book with different objectives.

Firstly, our emphasis is no longer principally on discrete-valued series. We have therefore removed Part One of the original text, which covered the ‘other models’ for such series. Our focus here is exclusively on hidden Markov models, but applied to a wide range of types of time series: continuous-valued, circular, multivariate, for instance, in addition to the types of data we previously considered, namely binary data, bounded and unbounded counts and categorical observations.

Secondly, we have attempted to make the models more accessible by illustrating how the computing environment R can be used to carry out the computations, e.g., for parameter estimation, model selection, model checking, decoding and forecasting. In our previous book we used proprietary software to perform numerical optimization, subject to linear constraints on the variables, for parameter estimation. We now show how one can use standard R functions instead. The R code that we used to carry out the computations for some of the applications is given, and can be applied directly in similar applications. We do not, however, supply a ready-to-use package; packages that cover ‘standard’ cases already exist. Rather, it is our intention to show the reader how to go about constructing and fitting application-specific variations of the standard models, variations that may not be covered in the currently available software. The programming exercises are intended to encourage readers to develop expertise in this respect.

The book is intended to illustrate the wonderful plasticity of hidden Markov models as general-purpose models for time series. We hope that readers will find it easy to devise for themselves ‘customized’ models that will be useful in summarizing and interpreting their data. To this end we offer a range of applications and types of data — Part Two is
entirely devoted to applications. Some of the applications appeared in
the original text, but these have been extended or refined.

Our intended readership is applied statisticians, students of statistics,
and researchers in fields in which time series arise that are not amenable
to analysis by the standard time series models such as Gaussian ARMA
models. Such fields include animal behaviour, epidemiology, finance, hy-
drology and sociology. We have tried to write for readers who wish to
acquire a general understanding of the models and their uses, and who
wish to apply them. Researchers primarily interested in developing the
theory of hidden Markov models are likely to be disappointed by the
lack of generality of our treatment, and by the dearth of material on
specific issues such as identifiability, hypothesis testing, properties of es-
timators and reversible jump Markov chain Monte Carlo methods. Such
readers would find it more profitable to refer to alternative sources, such
as Cappé, Moulines and Rydén (2005) or Ephraim and Merhav (2002).
Our strategy has been to present most of the ideas by using a single run-
ning example and a simple model, the Poisson–hidden Markov model.
In Chapter 8, and in Part Two of the book, we illustrate how this basic
model can be progressively and variously extended and generalized.

We assume only a modest level of knowledge of probability and statis-
tics: the reader is assumed to be familiar with the basic probability distri-
butions such as the Poisson, normal and binomial, and with the concepts
of dependence, correlation and likelihood. While we would not go as far
as Lindsey (2004, p. ix) and state that ‘Familiarity with classical intro-
ductive statistics courses based on point estimation, hypothesis testing,
confidence intervals […] will be a definite handicap’, we hope that exten-
sive knowledge of such matters will not prove necessary. No prior knowl-
edge of Markov chains is assumed, although our coverage is brief enough
that readers may wish to supplement our treatment by reading the rel-
vant parts of a book such as Grimmett and Stirzaker (2001). We have
also included exercises of a theoretical nature in many of the chapters,
both to fill in the details and to illustrate some of the concepts intro-
duced in the text. All the datasets analysed in this book can be accessed
at the following address: http://134.76.173.220/hmm-with-r/data.

This book contains some material which has not previously been pub-
lished, either by ourselves or (to the best of our knowledge) by others.
If we have anywhere failed to make appropriate acknowledgement of
the work of others, or misquoted their work in any way, we would be
grateful if the reader would draw it to our attention. The applications de-
scribed in Chapters 14, 15 and 16 contain material which first appeared in
(respectively) the South African Statistical Journal, the International
Journal of Epidemiology and Biometrics. We are grateful to the editors
of these journals for allowing us to reuse such material.

© 2009 by Walter Zucchini and Iain MacDonald
We wish to thank the following researchers for giving us access to their data, and in some cases spending much time discussing it with us: David Bowie, Graham Fick, Linda Haines, Len Lerer, Frikkie Potgieter, David Raubenheimer and Max Suster.

We are especially indebted to Andreas Schlegel and Jan Bulla for their important inputs, particularly in the early stages of the project; to Christian Gläser, Oleg Nenadić and Daniel Adler, for contributing their computing expertise; and to Antony Unwin and Ellis Pender for their constructive comments on and criticisms of different aspects of our work. The second author wishes to thank the Institute for Statistics and Econometrics of Georg–August–Universität, Göttingen, for welcoming him on many visits and placing facilities at his disposal. Finally, we are most grateful to our colleague and friend of many years, Linda Haines, whose criticism has been invaluable in improving this book.

Göttingen
November 2008
Notation and abbreviations

Since the underlying mathematical ideas are the important quantities, no notation should be adhered to slavishly. It is all a question of who is master.

Bellman (1960, p. 82)

[...] many writers have acted as though they believe that the success of the Box–Jenkins models is largely due to the use of the acronyms.

Granger (1982)

Notation

Although notation is defined as it is introduced, it may also be helpful to list here the most common meanings of symbols, and the pages on which they are introduced. Matrices and vectors are denoted by bold type. Transposition of matrices and vectors is indicated by the prime symbol:

All vectors are row vectors unless indicated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(i))</td>
<td>(i)th column of any matrix (A)</td>
<td>86</td>
</tr>
<tr>
<td>(A_n(\kappa))</td>
<td>(I_\kappa(\kappa)/I_0(\kappa))</td>
<td>160</td>
</tr>
<tr>
<td>(B)</td>
<td>(\Gamma P(x_t))</td>
<td>37</td>
</tr>
<tr>
<td>(C_t)</td>
<td>state occupied by Markov chain at time (t)</td>
<td>16</td>
</tr>
<tr>
<td>(C^{(t)})</td>
<td>((C_1, C_2, \ldots, C_t))</td>
<td>16</td>
</tr>
<tr>
<td>({g_t})</td>
<td>parameter process of a stochastic volatility model</td>
<td>190</td>
</tr>
<tr>
<td>(I_n)</td>
<td>modified Bessel function of the first kind of order (n)</td>
<td>156</td>
</tr>
<tr>
<td>(l)</td>
<td>log-likelihood</td>
<td>21</td>
</tr>
<tr>
<td>(L) or (LT)</td>
<td>likelihood</td>
<td>21, 35</td>
</tr>
<tr>
<td>(\log)</td>
<td>logarithm to the base (e)</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>number of states in a Markov chain, or number of components in a mixture</td>
<td>7</td>
</tr>
<tr>
<td>(N)</td>
<td>the set of all positive integers</td>
<td>17</td>
</tr>
<tr>
<td>(N_t)</td>
<td>nutrient level</td>
<td>220</td>
</tr>
<tr>
<td>(N(\bullet; \mu, \sigma^2))</td>
<td>distribution function of general normal distribution</td>
<td>191</td>
</tr>
<tr>
<td>(n(\bullet; \mu, \sigma^2))</td>
<td>density of general normal distribution</td>
<td>191</td>
</tr>
<tr>
<td>(p_i)</td>
<td>probability mass or density function in state (i)</td>
<td>31</td>
</tr>
<tr>
<td>(P(x))</td>
<td>diagonal matrix with (i)th diagonal element (p_i(x))</td>
<td>32</td>
</tr>
<tr>
<td>(R)</td>
<td>the set of all real numbers</td>
<td></td>
</tr>
</tbody>
</table>
NOTATION AND ABBREVIATIONS

T length of a time series 35
U square matrix with all elements equal to 1 19
$u(t)$ vector $(\Pr(C_t = 1), \ldots, \Pr(C_t = m))$ 17
$u_i(t)$ $\Pr(C_t = i)$, i.e. ith element of $u(t)$ 32
w_t $\alpha_t \Gamma' = \sum_i \alpha_t(i)$ 46
X_t observation at time t, or just tth observation 30
$X(t)$ (X_1, X_2, \ldots, X_t) 30
$X(-t)$ $(X_1, \ldots, X_{t-1}, X_{t+1}, \ldots, X_T)$ 76
X^b $(X_a, X_{a+1}, \ldots, X_b)$ 61
α_t (row) vector of forward probabilities 38
$\alpha_t(i)$ forward probability, i.e. $\Pr(X(t) = x(t), C_t = i)$ 59
β_t (row) vector of backward probabilities 60
$\beta_t(i)$ backward probability, i.e. $\Pr(X^T_{t+1} = x^T_{t+1} | C_t = i)$ 60
Γ transition probability matrix of Markov chain 17
γ_{ij} (i, j) element of Γ; probability of transition from state i to state j in a Markov chain 17
δ stationary or initial distribution of Markov chain, or vector of mixing probabilities 18
ϕ_t vector of forward probabilities, normalized to have sum equal to 1, i.e. α_t/w_t 46
Φ distribution function of standard normal distribution 19
1 (row) vector of ones 19

Abbreviations

ACF autocorrelation function
AIC Akaike’s information criterion
BIC Bayesian information criterion
CDLL complete-data log-likelihood
c.o.d. change of direction
c.v. coefficient of variation
HM hidden Markov
HMM hidden Markov model
MC Markov chain
MCMC Markov chain Monte Carlo
ML maximum likelihood
MLE maximum likelihood estimator or estimate
PACF partial autocorrelation function
qq-plot quantile-quantile plot
SV stochastic volatility
t.p.m. transition probability matrix

© 2009 by Walter Zucchini and Iain MacDonald