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CHAPTER 1

Preliminaries: mixtures and Markov
chains

1.1 Introduction

Hidden Markov models (HMMs) are models in which the distribution
that generates an observation depends on the state of an underlying
and unobserved Markov process. They show promise as flexible general-
purpose models for univariate and multivariate time series, especially for
discrete-valued series, including categorical series and series of counts.

The purposes of this chapter are to provide a very brief and informal
introduction to HMMs, and to their many potential uses, and then to dis-
cuss two topics that will be fundamental in understanding the structure
of such models. In Section 1.2 we give an account of (finite) mixture dis-
tributions, because the marginal distribution of a hidden Markov model
is a mixture distribution, and then, in Section 1.3, we introduce Markov
chains, which provide the underlying ‘parameter process’ of a hidden
Markov model.

Consider, as an example, the series of annual counts of major earth-
quakes (i.e. magnitude 7 and above) for the years 1900–2006, both inclu-
sive, displayed in Table 1.1 and Figure 1.1.∗ For this series, the applica-
tion of standard models such as autoregressive moving-average (ARMA)
models would be inappropriate, because such models are based on the
normal distribution. Instead, the usual model for unbounded counts is
the Poisson distribution, but as will be demonstrated later, the series
displays considerable overdispersion relative to the Poisson distribution,
and strong positive serial dependence. A model consisting of indepen-
dent Poisson random variables would therefore for two reasons also be
inappropriate. An examination of Figure 1.1 suggests that there may be
some periods with a low rate of earthquakes, and some with a relatively
high rate. HMMs, which allow the probability distribution of each ob-
servation to depend on the unobserved (or ‘hidden’) state of a Markov
chain, can accommodate both overdispersion and serial dependence. We

∗ These data were downloaded from http://neic.usgs.gov/neis/eqlists on 25
July 2007. Note, however, that the U.S. Geological Survey has undertaken a sys-
tematic review, which is expected to lead to revision of the observations for years
prior to 1990.
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4 PRELIMINARIES: MIXTURES AND MARKOV CHAINS

Table 1.1 Number of major earthquakes (magnitude 7 or greater) in the world,
1900–2006; to be read across rows.
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Figure 1.1 Number of major earthquakes (magnitude 7 or greater) in the world,
1900–2006.

shall use this series of earthquake counts as a running example in Part
One of the book, in order to illustrate the fitting of a Poisson–HMM and
many other aspects of that model.

Hidden Markov models have been used for at least three decades in
signal-processing applications, especially in the context of automatic
speech recognition, but interest in their theory and application has ex-
panded to other fields, e.g.:

• all kinds of recognition: face, gesture, handwriting, signature;

• bioinformatics: biological sequence analysis;

• environment: wind direction, rainfall, earthquakes;
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INTRODUCTION 5

• finance: series of daily returns;

• biophysics: ion channel modelling.

Attractive features of HMMs include their simplicity, their general math-
ematical tractability, and specifically the fact that the likelihood is rel-
atively straightforward to compute. The main aim of this book is to
illustrate how HMMs can be used as general-purpose models for time
series.

Following this preliminary chapter, the book introduces what we shall
call the basic HMM: basic in the sense that it is univariate, is based
on a homogeneous Markov chain, and has neither trend nor seasonal
variation. The observations may be either discrete- or continuous-valued,
but we initially ignore information that may be available on covariates.
We focus on the following issues:

• parameter estimation (Chapters 3 and 4);

• point and interval forecasting (Chapter 5);

• decoding, i.e. estimating the sequence of hidden states (Chapter 5);

• model selection, model checking and outlier detection (Chapter 6).

We give one example of the Bayesian approach to inference (Chapter 7).
In Chapter 8 we discuss the many possible extensions of the basic

HMM to a wider range of models. These include HMMs for series with
trend and seasonal variation, methods to include covariate information
from other time series, and multivariate models of various types.

Part Two of the book offers fairly detailed applications of HMMs to
time series arising in a variety of subject areas. These are intended to
illustrate the theory covered in Part One, and also to demonstrate the
versatility of HMMs. Indeed, so great is the variety of HMMs that it
is hard to imagine this variety being exhaustively covered by any single
software package. In some applications the model needs to accommodate
some special features of the time series. In such cases it is necessary to
write one’s own code. We have found the computing environment R
(Ihaka and Gentleman, 1996; R Development Core Team, 2008) to be
particularly convenient for this purpose.

Many of the chapters contain exercises, some theoretical and some
practical. Because one always learns more about models by applying
them in practice, and because some aspects of the theory of HMMs are
covered only in these exercises, we regard these as an important part of
the book. As regards the practical exercises, our strategy has been to
give examples of R functions for some important but simple cases, and
to encourage readers to learn to write their own code, initially just by
modifying the functions given in Appendix A.
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Figure 1.2 Major earthquakes 1900–2006: bar plot of observed counts, and
fitted Poisson distribution.

1.2 Independent mixture models

1.2.1 Definition and properties

Consider again the series of earthquake counts displayed in Figure 1.1.
A standard model for unbounded counts is the Poisson distribution,
with its probability function p(x) = e−λλx/x! and the property that the
variance equals the mean. However, for the earthquakes series the sample
variance, s2 ≈ 52, is much larger than the sample mean, x̄ ≈ 19, which
indicates strong overdispersion relative to the Poisson distribution and
the inappropriateness of that distribution as a model. The lack of fit is
confirmed by Figure 1.2, which displays both a bar plot of the observed
counts and the fitted Poisson distribution.

One method of dealing with overdispersed observations with a bi-
modal or — more generally — multimodal distribution is to use a mix-
ture model. Mixture models are designed to accommodate unobserved
heterogeneity in the population; that is, the population may consist of
unobserved groups, each having a distinct distribution for the observed
variable.

Consider for example the distribution of the number, X, of packets of
cigarettes bought by the customers of a supermarket. The customers can
be divided into groups, e.g. nonsmokers, occasional smokers, and regular
smokers. Now even if the number of packets bought by customers within
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INDEPENDENT MIXTURE MODELS 7

each group were Poisson-distributed, the distribution of X would not be
Poisson; it would be overdispersed relative to the Poisson, and maybe
even multimodal.

Analogously, suppose that each count in the earthquakes series is gen-
erated by one of two Poisson distributions, with means λ1 and λ2, where
the choice of mean is determined by some other random mechanism
which we call the parameter process. Suppose also that λ1 is selected
with probability δ1 and λ2 with probability δ2 = 1 − δ1. We shall see
later in this chapter that the variance of the resulting distribution ex-
ceeds the mean by δ1δ2(λ1 − λ2)2. If the parameter process is a series of
independent random variables, the counts are also independent; hence
the term ‘independent mixture’.

In general, an independent mixture distribution consists of a finite
number, say m, of component distributions and a ‘mixing distribution’
which selects from these components. The component distributions may
be either discrete or continuous. In the case of two components, the
mixture distribution depends on two probability or density functions:

component 1 2
probability or density function p1(x) p2(x).

To specify the component, one needs a discrete random variable C which
performs the mixing:

C =
{

1 with probability δ1

2 with probability δ2 = 1 − δ1.

The structure of that process for the case of two continuous component
distributions is illustrated in Figure 1.3. In that example one can think
of C as the outcome of tossing a coin with probability 0.75 of ‘heads’:
if the outcome is ‘heads’, then C = 1 and an observation is drawn from
p1; if it is ‘tails’, then C = 2 and an observation is drawn from p2. We
suppose that we do not know the value C, i.e. which of p1 or p2 was
active when the observation was generated.

The extension to m components is straightforward. Let δ1, . . . , δm

denote the probabilities assigned to the different components, and let
p1, . . . , pm denote their probability or density functions. Let X denote
the random variable which has the mixture distribution. It is easy to
show that the probability or density function of X is given by

p(x) =
m∑

i=1

δipi(x).

For the discrete case this follows immediately from

Pr(X = x) =
m∑

i=1

Pr(X = x | C = i) Pr(C = i).
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Figure 1.3 Process structure of a two-component mixture distribution. From
top to bottom, the states are 1,2,1,1,2,1. The corresponding component dis-
tributions are shown in the middle. The observations are generated from the
active component density.

Moreover, the expectation of the mixture can be given in terms of the ex-
pectations of the component distributions. Letting Yi denote the random
variable with probability function pi, we have

E(X) =
m∑

i=1

Pr(C = i) E(X | C = i) =
m∑

i=1

δi E(Yi).

The same result holds, of course, for a mixture of continuous distribu-
tions.

More generally, for a mixture the k th moment about the origin is
simply a linear combination of the k th moments of its components Yi:

E(Xk) =
m∑

i=1

δi E(Y k
i ), k = 1, 2, . . . .

Note that the analogous result does not hold for central moments. In
particular, the variance of X is not a linear combination of the variances
of its components Yi. Exercise 1 asks the reader to prove that, in the
two-component case, the variance of the mixture is given by

Var(X) = δ1Var(Y1) + δ2Var(Y2) + δ1δ2

(
E(Y1) − E(Y2)

)2
.
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INDEPENDENT MIXTURE MODELS 9

1.2.2 Parameter estimation

The estimation of the parameters of a mixture distribution is often per-
formed by maximum likelihood (ML). In general, the likelihood of a
mixture model with m components is given, for both discrete and con-
tinuous cases, by

L(θ1, . . . ,θm, δ1, . . . , δm | x1, . . . , xn) =
n∏

j=1

m∑
i=1

δipi(xj ,θi). (1.1)

Here θ1, . . . ,θm are the parameter vectors of the component distribu-
tions, δ1, . . . , δm are the mixing parameters, totalling 1, and x1, . . . , xn

are the n observations. Thus, in the case of component distributions
each specified by one parameter, 2m − 1 independent parameters have
to be estimated. The maximization of this likelihood is not trivial since
it is not possible to solve the maximization problem analytically. This
will be demonstrated by considering the case of a mixture of Poisson
distributions.

Suppose that m = 2 and the two components are Poisson-distributed
with means λ1 and λ2. Let δ1 and δ2 be the mixing parameters (with
δ1 + δ2 = 1). The mixture distribution p(x) is then given by

p(x) = δ1
λx

1e−λ1

x!
+ δ2

λx
2e−λ2

x!
.

Since δ2 = 1 − δ1, there are only three parameters to be estimated: λ1,
λ2 and δ1. The likelihood is

L(λ1, λ2, δ1 | x1, . . . , xn) =
n∏

i=1

(
δ1

λxi
1 e−λ1

xi!
+ (1 − δ1)

λxi
2 e−λ2

xi!

)
.

The analytic maximization of L with respect to λ1, λ2 and δ1 would be
awkward, as L is the product of n factors, each of which is a sum. First
taking the logarithm and then differentiating does not greatly simplify
matters, either. Therefore parameter estimation is more conveniently
carried out by numerical maximization of the likelihood (or its loga-
rithm), although the EM algorithm is a commonly used alternative: see
e.g. McLachlan and Peel (2000) or Frühwirth-Schnatter (2006). (We shall
in Chapter 4 discuss the EM algorithm more fully in the context of the
estimation of hidden Markov models.) A useful R package for estimation
in mixture models is flexmix (Leisch, 2004). However, it is straightfor-
ward to write one’s own R code to evaluate, and then maximize, mixture
likelihoods in simple cases. For instance, the following single R expres-
sion will evaluate the log of the likelihood of observations x (as given by
Equation (1.1)) of a mixture of Poisson-distributed components, lambda

© 2009 by Walter Zucchini and Iain MacDonald



10 PRELIMINARIES: MIXTURES AND MARKOV CHAINS

being the vector of means and delta the vector containing the corre-
sponding mixing distribution:

sum(log(outer(x,lambda,dpois)%*%delta)).

This log-likelihood can then be maximized by using (e.g.) the R
function nlm. However, the parameters δ and λ are constrained by∑m

i=1 δi = 1 and (for i = 1, . . . , m) δi > 0 and λi > 0. It is therefore nec-
essary to reparametrize if one wishes to use an unconstrained optimizer
such as nlm. One possibility is to maximize the likelihood with respect
to the 2m − 1 unconstrained parameters

ηi = log λi (i = 1, . . . , m)

and

τi = log

(
δi

1 −∑m
j=2 δj

)
(i = 2, . . . , m).

One recovers the original parameters via

λi = eηi , (i = 1, . . . ,m),

δi =
eτi

1 +
∑m

j=2 eτi
(i = 2, . . . , m),

and δ1 = 1 −∑m
j=2 δi. See Exercise 3.

1.2.3 Unbounded likelihood in mixtures

There is one aspect of mixtures of continuous distributions that differs
from the discrete case and is worth highlighting. It is this: it can happen
that, in the vicinity of certain parameter combinations, the likelihood is
unbounded. For instance, in the case of a mixture of normal distributions,
the likelihood becomes arbitrarily large if one sets a component mean
equal to one of the observations and allows the corresponding variance
to tend to zero. The problem has been extensively discussed in the liter-
ature on mixture models, and there are those who would say that, if the
likelihood is thus unbounded, the maximum likelihood estimates simply
‘do not exist’: see for instance Scholz (2006, p. 4630). The source of the
problem, however, is just the use of densities rather than probabilities
in the likelihood; it would not arise if one were to replace each density
value in the likelihood by the probability of the interval corresponding
to the recorded value. (For example, an observation recorded as ‘12.4’
is associated with the interval [12.35,12.45).) One then replaces the ex-
pression

∏n
j=1

∑m
i=1 δipi(xj , θi) for the likelihood — see Equation (1.1)

— by the discrete likelihood

L =
n∏

j=1

m∑
i=1

δi

∫ bj

aj

pi(x,θi) dx, (1.2)
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INDEPENDENT MIXTURE MODELS 11

Table 1.2 Poisson independent mixture models fitted to the earthquakes series.
The number of components is m, the mixing probabilities are denoted by δi,
and the component means by λi. The maximized likelihood is L.

model i δi λi − log L mean variance

m = 1 1 1.000 19.364 391.9189 19.364 19.364

m = 2 1 0.676 15.777 360.3690 19.364 46.182
2 0.324 26.840

m = 3 1 0.278 12.736 356.8489 19.364 51.170
2 0.593 19.785
3 0.130 31.629

m = 4 1 0.093 10.584 356.7337 19.364 51.638
2 0.354 15.528
3 0.437 20.969
4 0.116 32.079

observations 19.364 51.573

where the interval (aj , bj) consists of precisely those values which, if ob-
served, would be recorded as xj . This simply amounts to acknowledging
explicitly the interval nature of all ‘continuous’ observations. Another
way of avoiding the problem would be to impose a lower bound on the
variances and search for the best local maximum subject to that bound.
It can happen, though, that one is fortunate enough to avoid the likeli-
hood ‘spikes’ when searching for a local maximum; in this respect good
starting values can help.

The problem of unbounded likelihood does not arise for discrete-valued
observations because the likelihood is in that case a probability and
thereby bounded by 0 and 1.

1.2.4 Examples of fitted mixture models

Mixtures of Poisson distributions

If one uses nlm to fit a mixture of m Poisson distributions (m = 1,
2, 3, 4) to the earthquakes data, one obtains the results displayed in
Table 1.2. Notice, for instance, that the likelihood improvement resulting
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Figure 1.4 Earthquakes data: histogram of counts, compared to mixtures of 1–4
Poisson distributions.

from the addition of a fourth component is very small, and apparently
insufficient to justify the additional two parameters. Section 6.1 will
discuss the model selection problem in more detail. Figure 1.4 presents
a histogram of the observed counts and the four models fitted. It is clear
that the mixtures fit the observations much better than does a single
Poisson distribution, and visually the three- and four-state models seem
adequate. The better fit of the mixtures is also evident from the means
and variances of the four models as presented in Table 1.2. In computing
the means and variances of the models we have used E(X) =

∑
i δiλi

and Var(X) = E(X2) − (E(X))2, with E(X2) =
∑

i δi(λi + λ2
i ). For

comparison we also used the R package flexmix to fit the same four
models. The results corresponded closely except in the case of the four-
component model, where the highest likelihood value found by flexmix
was slightly inferior to that found by nlm.

Note, however, that the above discussion ignores the possibility of
serial dependence in the earthquakes data, a point we shall take up in
Chapter 2.
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Table 1.3 Data of Hastie et al. (2001), plus two mixture models. The first
model was fitted by direct numerical maximization in R, the second is the
model fitted by EM by Hastie et al.

−0.39 0.12 0.94 1.67 1.76 2.44 3.72 4.28 4.92 5.53
0.06 0.48 1.01 1.68 1.80 3.25 4.12 4.60 5.28 6.22

i δi μi σ2
i − log L

1 0.5546 4.656 0.8188
2 0.4454 1.083 0.8114

38.9134

1 0.546 4.62 0.87
2 0.454 1.06 0.88

(38.924)

Mixtures of normal distributions

As a very simple example of the fitting of an independent mixture of
normal distributions, consider the data presented in Table 8.1 of Hastie,
Tibshirani and Friedman (2001, p. 237); see our Table 1.3. Hastie et al.
use the EM algorithm to fit a mixture model with two normal compo-
nents.

Our two-component model, fitted by direct numerical maximization of
the log-likelihood in R, has log-likelihood −38.9134, and is also displayed
in Table 1.3. (Here we use as the likelihood the joint density of the
observations, not the discrete likelihood.) The parameter estimates are
close to those quoted by Hastie et al., but not identical, and by our
computations their model produces a log-likelihood of approximately
−38.924, i.e. marginally inferior to that of our model.

As a second example of the fitting of an independent mixture of nor-
mal distributions we now consider the durations series relating to the
much-studied ‘Old Faithful’ geyser. We shall say more about this and a
related series in Chapter 10, in particular as regards serial dependence,
but for the moment we ignore such dependence and describe only the
independent mixture model for the durations of eruptions. This example
provides an illustration of what can go wrong if one seeks to maximize
the joint density, and demonstrates how the technique of replacing ‘con-
tinuous’ observations by intervals is very flexible and can cope quite
generally with interval censoring.

The series we consider here is taken from Azzalini and Bowman (1990),
299 observations of the durations of successive eruptions of the geyser,
recorded to the nearest second except that some of the observations
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Table 1.4 Normal independent mixture models fitted to the Old Faithful dura-
tions series by maximizing the discrete likelihood. The number of components
is m, the mixing probabilities are denoted by δi, and the component means and
standard deviations by μi and σi. The maximized likelihood is L.

model i δi μi σi − log L

m = 2 1 0.354 1.981 0.311 1230.920
2 0.646 4.356 0.401

m = 3 1 0.277 1.890 0.134 1203.872
2 0.116 2.722 0.747
3 0.607 4.405 0.347

m = 4 1 0.272 1.889 0.132 1203.636
2 0.104 2.532 0.654
3 0.306 4.321 0.429
4 0.318 4.449 0.282

were identified only as short (S), medium (M) or long (L); the accu-
rately recorded durations range from 0:50 (minutes:seconds) to 5:27.
There were in all 20 short eruptions, 2 medium and 47 long. For certain
purposes Azzalini and Bowman represented the codes S, M, L by dura-
tions of 2, 3, and 4 minutes’ length, and that is the form in which the
data have been made available in the R package MASS; we refer to those
data as being in the MASS form.

When Azzalini and Bowman dichotomize the series, they do so at 3
minutes. We therefore treat S as lying below 3:00 (minutes:seconds), L as
lying above 3:00, and M, somewhat arbitrarily, as lying between 2:30 and
3:30. In the model to be discussed in Section 10.4 it will be convenient
to set a finite upper limit to the long durations; both there and here
we take ‘above 3’ to mean ‘between 3 and 20’. We evaluate the discrete
likelihood by using Equation (1.2), with the interval (aj , bj) equal to (0,
3), (2.50, 3.50) and (3, 20) for S, M and L respectively, and otherwise
equal to the observation ± 1

2 second.
Table 1.4 displays the three models that were fitted by using nlm

to maximize the discrete log-likelihood, and Figure 1.5 compares them
(for m = 2 and 3 only) with those fitted by maximizing the continuous
likelihood of the data in the MASS form (where by ‘continuous likelihood’
we mean the joint density). The attempt to fit a four-component model
by using nlm to maximize the continuous (log-) likelihood failed in that
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Figure 1.5 Old Faithful durations: histogram of observations (with S,M,L re-
placed by 2, 3, 4), compared to independent mixtures of 2–4 normal distribu-
tions. Thick lines (only for m = 2 and 3): p.d.f. of model based on continuous
likelihood. Thin lines (all cases): p.d.f. of model based on discrete likelihood.

it terminated at a very high likelihood value, with one of the components
being normal with mean 4.000 and standard deviation 1.2 × 10−6. This
is an example of the phenomenon of unbounded likelihood described in
Section 1.2.3, and demonstrates the value of using the discrete likelihood
rather than the continuous.

1.3 Markov chains

We now introduce Markov chains, a second building-block of hidden Mar-
kov models. Our treatment is restricted to those few aspects of discrete-
time Markov chains that we need. Thus, although we shall make passing
reference to properties such as irreducibility and aperiodicity, we shall
not dwell on such technical issues. For an excellent general account of the
topic, see Grimmett and Stirzaker (2001, Chapter 6), or Feller’s classic
text (Feller, 1968).
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16 PRELIMINARIES: MIXTURES AND MARKOV CHAINS

1.3.1 Definitions and example

A sequence of discrete random variables {Ct : t ∈ N} is said to be a
(discrete-time) Markov chain (MC) if for all t ∈ N it satisfies the
Markov property

Pr(Ct+1 | Ct, . . . , C1) = Pr(Ct+1 | Ct).

That is, conditioning on the ‘history’ of the process up to time t is equiv-
alent to conditioning only on the most recent value Ct. For compactness
we define C(t) as the history (C1, C2, . . . , Ct), in which case the Markov
property can be written as

Pr(Ct+1 | C(t)) = Pr(Ct+1 | Ct).

The Markov property can be regarded as a ‘first relaxation’ of the as-
sumption of independence. The random variables {Ct} are dependent
in a specific way that is mathematically convenient, as displayed in the
following directed graph in which the past and the future are dependent
only through the present.

Ct−2 Ct−1 Ct Ct+1

Important quantities associated with a Markov chain are the condi-
tional probabilities called transition probabilities:

Pr(Cs+t = j | Cs = i).

If these probabilities do not depend on s, the Markov chain is called
homogeneous, otherwise nonhomogeneous. Unless there is an explicit
indication to the contrary we shall assume that the Markov chain under
discussion is homogeneous, in which case the transition probabilities will
be denoted by

γij(t) = Pr(Cs+t = j | Cs = i).
Notice that the notation γij(t) does not involve s. The matrix Γ(t) is
defined as the matrix with (i, j) element γij(t).

An important property of all finite state-space homogeneous Markov
chains is that they satisfy the Chapman–Kolmogorov equations:

Γ(t + u) = Γ(t)Γ(u).

The proof requires only the definition of conditional probability and the
application of the Markov property: this is Exercise 9. The Chapman–
Kolmogorov equations imply that, for all t ∈ N,

Γ(t) = Γ(1)t;
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i.e. the matrix of t-step transition probabilities is the t th power of Γ(1),
the matrix of one-step transition probabilities. The matrix Γ(1), which
will be abbreviated as Γ, is a square matrix of probabilities with row
sums equal to 1:

Γ =

⎛⎜⎝ γ11 · · · γ1m

...
. . .

...
γm1 · · · γmm

⎞⎟⎠ ,

where (throughout this text) m denotes the number of states of the
Markov chain. The statement that the row sums are equal to 1 can be
written as Γ1′ = 1′; that is, the column vector 1′ is a right eigenvector of
Γ and corresponds to eigenvalue 1. We shall refer to Γ as the (one-step)
transition probability matrix (t.p.m.). Many authors use instead
the term ‘transition matrix’; we avoid that term because of possible
confusion with a matrix of transition counts.

The unconditional probabilities Pr(Ct = j) of a Markov chain
being in a given state at a given time t are often of interest. We denote
these by the row vector

u(t) = (Pr(Ct = 1), . . . ,Pr(Ct = m)), t ∈ N.

We refer to u(1) as the initial distribution of the Markov chain. To
deduce the distribution at time t + 1 from that at t we postmultiply by
the transition probability matrix Γ:

u(t + 1) = u(t)Γ. (1.3)

The proof of this statement is left as an exercise.

Example: Imagine that the sequence of rainy and sunny days is such
that each day’s weather depends only on the previous day’s, and the
transition probabilities are given by the following table.

day t + 1

day t rainy sunny

rainy 0.9 0.1
sunny 0.6 0.4

That is: if today is rainy, the probability that tomorrow will be rainy
is 0.9; if today is sunny, that probability is 0.6. The weather is then a
two-state homogeneous Markov chain, with t.p.m. Γ given by

Γ =
(

0.9 0.1
0.6 0.4

)
.
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Now suppose that today (time 1) is a sunny day. This means that the
distribution of today’s weather is

u(1) =
(
Pr(C1 = 1), Pr(C1 = 2)

)
=
(
0, 1
)
.

The distribution of the weather of tomorrow, the day after tomorrow,
and so on, can be calculated by repeatedly postmultiplying u(1) by Γ,
the t.p.m.:

u(2) =
(
Pr(C2 = 1), Pr(C2 = 2)

)
= u(1)Γ = (0.6, 0.4),

u(3) =
(
Pr(C3 = 1), Pr(C3 = 2)

)
= u(2)Γ = (0.78, 0.22), etc.

1.3.2 Stationary distributions

A Markov chain with transition probability matrix Γ is said to have
stationary distribution δ (a row vector with nonnegative elements)
if δΓ = δ and δ1′ = 1. The first of these requirements expresses the
stationarity, the second is the requirement that δ is indeed a probability
distribution.

For instance, the Markov chain with t.p.m. given by

Γ =

⎛⎝ 1/3 1/3 1/3
2/3 0 1/3
1/2 1/2 0

⎞⎠
has as stationary distribution δ = 1

32 (15, 9, 8).
Since u(t + 1) = u(t)Γ, a Markov chain started from its stationary

distribution will continue to have that distribution at all subsequent time
points, and we shall refer to such a process as a stationary Markov
chain. It is perhaps worth stating that this assumes more than merely
homogeneity; homogeneity alone would not be sufficient to render the
Markov chain a stationary process, and we prefer to reserve the adjective
‘stationary’ for homogeneous Markov chains that have the additional
property that the initial distribution u(1) is the stationary distribution.
Not all authors use this terminology, however: see e.g. McLachlan and
Peel (2000, p. 328), who use the word ‘stationary’ of a Markov chain
where we would say ‘homogeneous’.

An irreducible (homogeneous, discrete-time, finite state-space) Mar-
kov chain has a unique, strictly positive, stationary distribution. Note
that although the technical assumption of irreducibility is needed for
this conclusion, aperiodicity is not: see Grimmett and Stirzaker (2001),
Lemma 6.3.5 on p. 225 and Theorem 6.4.3 on p. 227.

A general result that can conveniently be used to compute a stationary
distribution (see Exercise 8(a)) is as follows. The vector δ with nonnega-
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tive elements is a stationary distribution of the Markov chain with t.p.m.
Γ if and only if

δ(Im − Γ + U) = 1,

where 1 is a row vector of ones, Im is the m × m identity matrix, and
U is the m × m matrix of ones. Alternatively, a stationary distribution
can be found by deleting one of the equations in the system δΓ = δ and
replacing it by

∑
i δi = 1.

1.3.3 Reversibility

A property of Markov chains (and other random processes) that is some-
times of interest is reversibility. A random process is said to be re-
versible if its finite-dimensional distributions are invariant under rever-
sal of time. In the case of a stationary irreducible Markov chain with
t.p.m. Γ and stationary distribution δ, it is necessary and sufficient for
reversibility that the ‘detailed balance conditions’

δiγij = δjγji

be satisfied for all states i and j (Kelly, 1979, p. 5). These conditions are
trivially satisfied by all two-state stationary irreducible Markov chains,
which are thereby reversible. The Markov chain in the example in Section
1.3.2 is not reversible, however, because δ1γ12 = 15

32 × 1
3 = 5

32 but δ2γ21 =
9
32 × 2

3 = 6
32 . Exercise 8 in Chapter 2 and Exercise 8 in Chapter 9 present

some results and examples concerning reversibility in HMMs.

1.3.4 Autocorrelation function

We shall have occasion (e.g. in Sections 10.2.1 and 13.1.1) to compare
the autocorrelation function (ACF) of a hidden Markov model with that
of a Markov chain. We therefore discuss the latter now. We assume of
course that the states of the Markov chain are quantitative and not
merely categorical. The ACF of a Markov chain {Ct} on {1, 2, . . . , m},
assumed stationary and irreducible, may be obtained as follows.

Firstly, defining v = (1, 2, . . . , m) and V = diag(1, 2, . . . , m), we have,
for all nonnegative integers k,

Cov(Ct, Ct+k) = δVΓkv′ − (δv′)2; (1.4)

the proof is Exercise 10. Secondly, if Γ is diagonalizable, and its eigen-
values (other than 1) are denoted by ω2, ω3, . . . , ωm, then Γ can be
written as

Γ = UΩU−1,

where Ω is diag(1, ω2, ω3, . . . , ωm) and the columns of U are correspond-
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ing right eigenvectors of Γ. We then have, for nonnegative integers k,

Cov(Ct, Ct+k) = δVUΩkU−1v′ − (δv′)2

= aΩkb′ − a1b1

=
m∑

i=2

aibiω
k
i ,

where a = δVU and b′ = U−1v′. Hence Var(Ct) =
∑m

i=2 aibi and, for
nonnegative integers k,

ρ(k) ≡ Corr(Ct, Ct+k) =
m∑

i=2

aibiω
k
i

/ m∑
i=2

aibi. (1.5)

This is a weighted average of the k th powers of the eigenvalues ω2, ω3,
. . . , ωm, and somewhat similar to the ACF of a Gaussian autoregressive
process of order m − 1. Note that Equation (1.5) implies in the case
m = 2 that ρ(k) = ρ(1)k for all nonnegative integers k, and that ρ(1) is
the eigenvalue other than 1 of Γ.

1.3.5 Estimating transition probabilities

If we are given a realization of a Markov chain, and wish to estimate the
transition probabilities, one approach — but not the only one — is to
find the transition counts and estimate the transition probabilities from
them in an obvious way. For instance, if the MC has three states and
the observed sequence is

2332111112 3132332122 3232332222 3132332212 3232132232
3132332223 3232331232 3232331222 3232132123 3132332121,

then the matrix of transition counts is

(fij) =

⎛⎝ 4 7 6
8 10 24
6 24 10

⎞⎠ ,

where fij denotes the number of transitions observed from state i to
state j. Since the number of transitions from state 2 to state 3 is 24,
and the total number of transitions from state 2 is 8+10+24, a plausible
estimate of γ23 is 24/42. The t.p.m. Γ is therefore plausibly estimated
by ⎛⎝ 4/17 7/17 6/17

8/42 10/42 24/42
6/40 24/40 10/40

⎞⎠ .

We shall now show that this is in fact the conditional maximum likeli-
hood estimate of Γ, conditioned on the first observation.
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Suppose, then, that we wish to estimate the m2−m parameters γij (i �=
j) of an m-state Markov chain {Ct} from a realization c1, c2, . . . , cT . The
likelihood conditioned on the first observation is

L =
m∏

i=1

m∏
j=1

γ
fij

ij .

The log-likelihood is

l =
m∑

i=1

⎛⎝ m∑
j=1

fij log γij

⎞⎠ =
m∑

i=1

li (say),

and we can maximize l by maximizing each li separately. Substituting
1 −∑k �=i γik for γii, differentiating li with respect to an off-diagonal
transition probability γij , and equating the derivative to zero yields

0 =
−fii

1 −∑k �=i γik
+

fij

γij
= −fii

γii
+

fij

γij
.

Hence, unless a denominator is zero in the above equation, fijγii = fiiγij ,
and so γii

∑m
j=1 fij = fii. This implies that, at a (local) maximum of

the likelihood,

γii = fii

/ m∑
j=1

fij and γij = fijγii/fii = fij

/ m∑
j=1

fij .

(We could instead use Lagrange multipliers to express the constraints∑m
j=1 γij = 1 subject to which we seek to maximize the terms li and

therefore the likelihood: see Exercise 11.)
The estimator γ̂ij = fij/

∑m
k=1 fik (i, j = 1, . . . ,m) — which is just

the empirical transition probability — is thereby seen to be a conditional
maximum likelihood estimator of γij . Note also that this estimator of Γ
satisfies the requirement that the row sums should be equal to 1.

The assumption of stationarity of the Markov chain was not used in
the above derivation. If we are prepared to assume stationarity, we may
use the unconditional likelihood. This is the conditional likelihood as
above, multiplied by the stationary probability δc1 . The unconditional
likelihood or its logarithm may then be maximized numerically, subject
to nonnegativity and row-sum constraints, in order to estimate the tran-
sition probabilities γij . Bisgaard and Travis (1991) show in the case of a
two-state Markov chain that, barring some extreme cases, the uncondi-
tional likelihood equations have a unique solution. For some nontrivial
special cases of the two-state chain, they also derive explicit expressions
for the unconditional MLEs of the transition probabilities. Since we use
this result later (in Section 10.2.1), we state it here.
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Suppose the Markov chain {Ct} takes the values 0 and 1, and that
we wish to estimate the transition probabilities γij from a sequence of
observations in which there are fij transitions from state i to state j
(i, j = 0, 1), but f00 = 0. So in the observations a zero is always followed
by a one. Define c = f10 + (1− c1) and d = f11. Then the unconditional
MLEs of the transition probabilities are given by

γ̂01 = 1 and γ̂10 =
−(1 + d) +

(
(1 + d)2 + 4c(c + d − 1)

) 1
2

2(c + d − 1)
. (1.6)

1.3.6 Higher-order Markov chains

This section is somewhat specialized, and the material is used only in
Section 8.3 and parts of Sections 10.2.2 and 12.2.2. It will therefore not
interrupt the continuity greatly if the reader should initially omit this
section.

In cases where observations on a process with finite state-space appear
not to satisfy the Markov property, one possibility that suggests itself
is to use a higher-order Markov chain, i.e. a model {Ct} satisfying the
following generalization of the Markov property for some l ≥ 2:

Pr(Ct | Ct−1, Ct−2, . . .) = Pr(Ct | Ct−1, . . . , Ct−l).

An account of such higher-order Markov chains may be found, for in-
stance, in Lloyd (1980, Section 19.9). Although such a model is not in
the usual sense a Markov chain, i.e. not a ‘first-order’ Markov chain, we
can redefine the model in such a way as to produce an equivalent process
which is. If we let Yt = (Ct−l+1, Ct−l+2, . . . , Ct), then {Yt} is a first-
order Markov chain on M l, where M is the state space of {Ct}. Although
some properties may be more awkward to establish, no essentially new
theory is therefore involved in analysing a higher-order Markov chain
rather than a first-order one.

A second-order Markov chain, if stationary, is characterized by the
transition probabilities

γ(i, j, k) = P(Ct = k | Ct−1 = j, Ct−2 = i),

and has stationary bivariate distribution u(j, k) = P(Ct−1 = j, Ct = k)
satisfying

u(j, k) =
m∑

i=1

u(i, j)γ(i, j, k) and
m∑

j=1

m∑
k=1

u(j, k) = 1.

For example, the most general stationary second-order Markov chain
{Ct} on the two states 1 and 2 is characterized by the following four
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transition probabilities:

a = Pr(Ct =2 | Ct−1 =1, Ct−2 =1),
b = Pr(Ct =1 | Ct−1 =2, Ct−2 =2),
c = Pr(Ct =1 | Ct−1 =2, Ct−2 =1),
d = Pr(Ct =2 | Ct−1 =1, Ct−2 =2).

The process {Yt} = {(Ct−1, Ct)} is then a first-order Markov chain,
on the four states (1,1), (1,2), (2,1), (2,2), with transition probability
matrix ⎛⎜⎜⎝

1 − a a 0 0
0 0 c 1 − c

1 − d d 0 0
0 0 b 1 − b

⎞⎟⎟⎠ . (1.7)

Notice the structural zeros appearing in this matrix. It is not possible,
for instance, to make a transition directly from (2,1) to (2,2); hence the
zero in row 3 and column 4 in the t.p.m. (1.7). The parameters a, b,
c and d are bounded by 0 and 1 but are otherwise unconstrained. The
stationary distribution of {Yt} is proportional to the vector(

b(1 − d), ab, ab, a(1 − c)
)
,

from which it follows that the matrix (u(j, k)) of stationary bivariate
probabilities for {Ct} is

1
b(1 − d) + 2ab + a(1 − c)

(
b(1 − d) ab

ab a(1 − c)

)
.

Of course the use of a general higher-order Markov chain (instead
of a first-order one) increases the number of parameters of the model;
a general Markov chain of order l on m states has ml(m − 1) indepen-
dent transition probabilities. Pegram (1980) and Raftery (1985a,b) have
therefore proposed certain classes of parsimonious models for higher-
order chains. Pegram’s models have m + l − 1 parameters, and those of
Raftery m(m − 1) + l − 1. For m = 2 the models are equivalent, but
for m > 2 those of Raftery are more general and can represent a wider
range of dependence patterns and autocorrelation structures. In both
cases an increase of one in the order of the Markov chain requires only
one additional parameter.

Raftery’s models, which he terms ‘mixture transition distribution’
(MTD) models, are defined as follows. The process {Ct} takes values
in M = {1, 2, . . . ,m} and satisfies

Pr(Ct =j0 | Ct−1 =j1, . . . , Ct−l =jl) =
l∑

i=1

λi q(ji, j0), (1.8)
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where
∑l

i=1 λi = 1, and Q = (q(j, k)) is an m × m matrix with non-
negative entries and row sums equal to one, such that the right-hand
side of Equation (1.8) is bounded by zero and one for all j0, j1, . . . ,
jl ∈ M . This last requirement, which generates ml+1 pairs of nonlinear
constraints on the parameters, ensures that the conditional probabilities
in Equation (1.8) are indeed probabilities, and the condition on the row
sums of Q ensures that the sum over j0 of these conditional probabilities
is one. Note that Raftery does not assume that the parameters λi are
nonnegative.

A variety of applications are presented by Raftery (1985a) and by
Raftery and Tavaré (1994). In several of the fitted models there are
negative estimates of some of the coefficients λi. For further accounts of
this class of models, see Haney (1993), Berchtold (2001), and Berchtold
and Raftery (2002).

Azzalini and Bowman (1990) report the fitting of a second-order Mar-
kov chain model to the binary series they use to represent the lengths of
successive eruptions of the Old Faithful geyser. Their analysis, and some
alternative models, will be discussed in Chapter 10.

Exercises

1. Let X be a random variable which is distributed as a δ1, δ2-mixture
of two distributions with expectations μ1, μ2, and variances σ2

1 and
σ2

2 , respectively, where δ1 + δ2 = 1.

(a) Show that Var(X) = δ1σ
2
1 + δ2σ

2
2 + δ1δ2(μ1 − μ2)2.

(b) Show that a (nontrivial) mixture X of two Poisson distributions
with distinct means is overdispersed, that is Var(X) > E(X).

(c) Generalize part (b) to a mixture of m ≥ 2 Poisson distributions.

2. A zero-inflated Poisson distribution is sometimes used as a model for
unbounded counts displaying overdispersion relative to the Poisson.
Such a model is a mixture of two distributions: one is a Poisson and
the other is identically zero.

(a) Is it ever possible for such a model to display underdispersion?
(b) Now consider the zero-inflated binomial. Is it possible in such a

model that the variance is less than the mean?

3. Write an R function to minimize minus the log-likelihood of a Poisson
mixture model with m components, using the nonlinear minimizer
nlm.
Hint: first write a function to transform the parameters δ and λ into
the unconstrained parameters τ and η defined on p. 10. You will also
need a function to reverse the transformation.
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4. Consider the following data, which appear in Lange (1995, 2002,
2004). (There they are quoted from Titterington, Smith and Makov
(1985) and Hasselblad (1969), but the trail leads back via Schilling
(1947) to Whitaker (1914), where in all eight similar datasets appear
as Table XV on p. 67.)
Here ni denotes the number of days in 1910–1912 on which there ap-
peared, in The Times of London, i death notices in respect of women
aged 80 or over at death.

i 0 1 2 3 4 5 6 7 8 9

ni 162 267 271 185 111 61 27 8 3 1

(a) Use nlm or optim in R to fit a mixture of two Poisson distributions
to these observations. (The parameter estimates reported by Lange
(2002, p. 36; 2004, p. 151) are, in our notation: δ̂1 = 0.3599, λ̂1 =
1.2561 and λ̂2 = 2.6634.)

(b) Fit also a single Poisson distribution to these data. Is a single
Poisson distribution adequate as a model?

(c) Fit a mixture of three Poisson distributions to these observations.
(d) How many components do you think are necessary?
(e) Repeat (a)–(d) for some of the other seven datasets of Whitaker.

5. Consider the series of weekly sales (in integer units) of a particu-
lar soap product in a supermarket, as shown in Table 1.5. The data
are taken from a database provided by the Kilts Center for Mar-
keting, Graduate School of Business of the University of Chicago,
at: http://gsbwww.uchicago.edu/kilts/research/db/dominicks.
(The product is ‘Zest White Water 15 oz.’, with code 3700031165.)
Fit Poisson mixture models with one, two, three and four components.
How many components do you think are necessary?

6. Consider a stationary two-state Markov chain with transition proba-
bility matrix given by

Γ =
(

γ11 γ12

γ21 γ22

)
.

(a) Show that the stationary distribution is

(δ1, δ2) =
1

γ12 + γ21
(γ21, γ12) .

(b) Consider the case

Γ =
(

0.9 0.1
0.2 0.8

)
,
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Table 1.5 Weekly sales of the soap product; to be read across rows.

1 6 9 18 14 8 8 1 6 7 3 3 1 3 4 12 8 10 8 2
17 15 7 12 22 10 4 7 5 0 2 5 3 4 4 7 5 6 1 3
4 5 3 7 3 0 4 5 3 3 4 4 4 4 4 3 5 5 5 7
4 0 4 3 2 6 3 8 9 6 3 4 3 3 3 3 2 1 4 5
5 2 7 5 2 3 1 3 4 6 8 8 5 7 2 4 2 7 4 15

15 12 21 20 13 9 8 0 13 9 8 0 6 2 0 3 2 4 4 6
3 2 5 5 3 2 1 1 3 1 2 6 2 7 3 2 4 1 5 6
8 14 5 3 6 5 11 4 5 9 9 7 9 8 3 4 8 6 3 5
6 3 1 7 4 9 2 6 6 4 6 6 13 7 4 8 6 4 4 4
9 2 9 2 2 2 13 13 4 5 1 4 6 5 4 2 3 10 6 15
5 9 9 7 4 4 2 4 2 3 8 15 0 0 3 4 3 4 7 5
7 6 0 6 4 14 5 1 6 5 5 4 9 4 14 2 2 1 5 2
6 4

and the following two sequences of observations that are assumed
to be generated by the above Markov chain.

Sequence 1: 1 1 1 2 2 1
Sequence 2: 2 1 1 2 1 1

Compute the probability of each of the sequences. Note that each
sequence contains the same number of ones and twos. Why are
these sequences not equally probable?

7. Consider a stationary two-state Markov chain with transition proba-
bility matrix given by

Γ =
(

γ11 γ12

γ21 γ22

)
.

Show that the k-step transition probability matrix, i.e. Γk, is given
by

Γk =
(

δ1 δ2

δ1 δ2

)
+ wk

(
δ2 −δ2

−δ1 δ1

)
,

where w = 1 − γ12 − γ21 and δ1 and δ2 are as defined in Exercise
6. (Hint: One way of showing this is to diagonalize the transition
probability matrix. But there is a quicker way.)

8.(a) This is one of several possible approaches to finding the station-
ary distribution of a Markov chain; plundered from Grimmett and
Stirzaker (2001), Exercise 6.6.5.
Suppose Γ is the transition probability matrix of a (discrete-time,
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homogeneous) Markov chain on m states, and that δ is a nonneg-
ative row vector with m components. Show that δ is a stationary
distribution of the Markov chain if and only if

δ(Im − Γ + U) = 1,

where 1 is a row vector of ones, and U is an m×m matrix of ones.

(b) Write an R function statdist(gamma) that computes the station-
ary distribution of the Markov chain with t.p.m. gamma.

(c) Use your function to find stationary distributions corresponding to
the following transition probability matrices. One of them should
cause a problem!

i.

⎛⎝ 0.7 0.2 0.1
0 0.6 0.4

0.5 0 0.5

⎞⎠
ii.

⎛⎝ 0 1 0
1
3 0 2

3
0 1 0

⎞⎠

iii.

⎛⎜⎜⎝
0 0.5 0 0.5
0.75 0 0.25 0
0 0.75 0 0.25
0.5 0 0.5 0

⎞⎟⎟⎠

iv.

⎛⎜⎜⎝
0.25 0.25 0.25 0.25
0.25 0.25 0.5 0
0 0 0.25 0.75
0 0 0.5 0.5

⎞⎟⎟⎠

v.

⎛⎜⎜⎝
1 0 0 0
0.5 0 0.5 0
0 0.75 0 0.25
0 0 0 1

⎞⎟⎟⎠
9. Prove the Chapman–Kolmogorov equations.

10. Prove Equation (1.4).

11. Let the quantities ai be nonnegative, with
∑

i ai > 0. Using a La-
grange multiplier, maximize S =

∑m
i=1 ai log δi over δi ≥ 0, subject

to
∑

i δi = 1. (Check the second- as well as the first-derivative condi-
tion.)

12. (This is based on Example 2 of Bisgaard and Travis (1991).) Consider
the following sequence of 21 observations, assumed to arise from a
two-state (homogeneous) Markov chain:

11101 10111 10110 11111 1.
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(a) Estimate the transition probability matrix by ML (maximum like-
lihood) conditional on the first observation.

(b) Estimate the t.p.m. by unconditional ML (assuming stationarity
of the Markov chain).

(c) Use the R functions contour and persp to produce contour and
perspective plots of the unconditional log-likelihood (as a function
of the two off-diagonal transition probabilities).

13. Consider the following two transition probability matrices, neither of
which is diagonalizable:

(a)

Γ =

⎛⎝ 1/3 1/3 1/3
2/3 0 1/3
1/2 1/2 0

⎞⎠ ;

(b)

Γ =

⎛⎜⎜⎝
0.9 0.08 0 0.02
0 0.7 0.2 0.1
0 0 0.7 0.3
0 0 0 1

⎞⎟⎟⎠ .

In each case, write Γ in Jordan canonical form, and so find an explicit
expression for the t-step transition probabilities (t =1, 2, . . . ).

14. Consider the following (very) short DNA sequence, taken from Singh
(2003, p. 358):

AACGT CTCTA TCATG CCAGG ATCTG

Fit a homogeneous Markov chain to these data by

(a) maximizing the likelihood conditioned on the first observation;
(b) assuming stationarity and maximizing the unconditional likelihood

of all 25 observations.

Compare your estimates of the t.p.m. with each other and with the
estimate displayed in Table 1 of Singh (p. 360).

15. Write an R function rMC(n,m,gamma,delta=NULL) that generates a
series of length n from an m-state Markov chain with t.p.m. gamma. If
the initial state distribution is given, then it should be used; otherwise
the stationary distribution should be used as the initial distribution.
(Use your function statdist from Exercise 8(b).)
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